Коэффициент теплопередачи окон ПВХ
Стеклопакеты и их теплопередача
Стеклопакеты и их теплопередача (мифы и заблуждения).
Ещё не так давно бытовало мнение, что любое окно — это, считай, дыра в стене, которая обходится владельцу дома гораздо дороже, чем сама стена! Причём как на этапе строительства, так и на этапе эксплуатации строения. Если обратить внимание на деревенские дома — окошки всегда довольно маленькие — это самая холодная и продуваемая часть дома. Сейчас времена уже другие, в окнах стоят герметичные стеклопакеты и никаких бумажных лент на клейстере, возле окон не гуляют ветры. Но насколько изменились тепловые характеристики окон? Почему они вдруг стали теплее и самое важное — насколько именно они стали теплее?
Согласно норм строительной теплотехники, заполнения световых проёмов должны были иметь. В зависимости от градусо-суток отопительного периода коэффициент требуемого сопротивления теплопередаче для окон, балконных дверей, витрин и витражей изменяется от R = 0,3 до R = 0,8 м²·°С/Вт (СП 50.13330.2012).
Теплопотери в окнах складываются из двух величин: теплопередача самого стеклопакета;
теплопередача оконной рамы и места примыкания стекла к раме.
Оконных рам существует великое множество как по профилю, так и по бренду, но материалом для изготовления рам в основном служат: ПВХ пластик, древесина, алюминий. ПВХ и Алюминевые профили для оконных рам — это отдельная большая тема! Рассматривая конструкции этих профилей понимаешь, что инженеры потрудились на славу. Деревянные немного проще, но не менее интересны.
Величина теплопотерь через оконную раму зависит не столько от материала, сколько от конструктивного решения самого профиля. Сколько воздушных замкнутых камер, каковы способы борьбы с конвекцией воздуха в этих камерах, отведение конденсата из пазов и прочее.
Стеклопакеты состоят из двух и более стёкол, скреплённых (склеенных) между собой по контуру с помощью дистанционных рамок и герметиков. Рамки бывают металлическими или пластиковыми и, конечно, тоже влияют на общую картину теплопотерь, но это немного другая история! Стеклопакет представляет собой одну или несколько герметичных камер, заключённых между стёклами. Согласно ГОСТ 24866 стеклопакеты можно классифицировать:
По количеству камер . Между каждыми двумя стёклами образуется пространство, называемое камерой. В связи с этим стеклопакеты подразделяют на однокамерные (два стекла), двухкамерные (три стекла) и т. д.
По ширине . Ширина стеклопакета — это полная ширина блока вместе со стеклянной и воздушной частью. Встречаются стеклопакеты шириной 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 42, 44 мм и др.
По типам применяемого стекла : обычное; энергосберегающее — стёкла с низкоэмиссионным покрытием (с твёрдым или мягким покрытием — также известны как К или I-тип); шумозащитное – триплекс; солнцезащитное — тонированное стекло в массе или тонированное пленкой; ударопрочное — стекло триплекс с высоким классом защиты.
Маркировка стеклопакета — стекло/марка — дистанция/наполнение — стекло/марка. Маркировка всегда начинается с внешнего стекла, обращённого на улицу.
Пример: 4M0-16-4M1-12Ar-4K — 4 мм стекло марки М0, 16 мм воздушная камера, 4 мм стекло М1, 12 мм дистанция, заполнение камеры аргоном, 4 мм К-стекло.
Стёкла марки М изготавливают методом вытяжки. Цифра после М — допустимые дефекты, чем меньше цифра — тем меньше дефектов.
Стёкла марки F — флоат стёкла, которые производятся при помощи раскалённого олова, в результате чего получается идеально гладкая поверхность с двух сторон.
Стёкла с обозначением К — энергосберегающие низкоэмисионные стёкла с твёрдым покрытием, нанесённым непосредственно в процессе изготовления стекла.
Стёкла с обозначением I — энергосберегающие низкоэмисионные стёкла с мягким покрытием, нанесённым спецоборудованием в условиях вакуума.
Стёкла марки S — это окрашенные в массе стёкла, производимые путём флоат-процесса при помощи добавления в сырьё оксидов металлов. Интенсивность цвета и солнцезащитные характеристики варьируются в зависимости от толщины стекла. Такое стекло бывает следующих оттенков: бронзовый, зелёный, серый, голубой.
Триплекс — это многослойное стекло, склеенное между собой полимерной плёнкой. Преимущество этого стекла в том, что при ударе такое стекло не разлетается на мелкие осколки, а удерживается на плёнке.
Ширина камеры (звукоизоляция) .
Если однокамерное стекло обычно рассчитывается по формуле 4-16-4 (где 4 мм — стекло, 16 мм межстекольное пространство), то для двухкамерного стеклопакета формула уже другая. Здесь вступает в действие вопрос шума: чтобы шум гасился наиболее эффективно, расстояния между стеклами в одном блоке должны быть разными. Формула может быть следующей 8-18-6-20-8. На шумозащиту ширина дистанции оказывает большое влияние; чем шире, тем выше звукоизоляционные свойства стеклопакета + разность размера камер. Ощутимый результат дает применение триплекса и более толстых стёкол.
Энергосберегающие стёкла подразделяются на 2 вида:
К-стекло (Low-E) твёрдое покрытие — твердость достигается за счёт того, что напыление оксидов металлов, которое наносится на плоскость горячего стекла, сплавляется с этим стеклом. В большинстве случаев оно устанавливается в стеклопакетах с внутренней стороны помещения. Установлено, что теплоизоляционные характеристики оказываются выше на 20%, а фурнитура обычно служит на 30% дольше.
I-стекло (Double Low-E) мягкое покрытие — данный тип стекол производится методом напыления специального энергосберегающего покрытия, преимущественный состав которого состоит из окисей металлов. Это делает I-стёкла более прозрачными в отличие от K-стекол. Энергосберегающее I-стекло обладает светопропускающими характеристиками, практически ничем не отличающимися от обыкновенных стекол. Однако при этом стёкла мягкого покрытия отличаются более лучшими теплозащитными показателями. Так, например, при температуре окружающей среды в -26°С и при температуре внутри помещения +20°С, температура энергосберегающего стекла с мягким покрытием будет равна +14°С, в то время как температура простого обыкновенного стекла не превысит +5°С, а температура низкоэмиссионного К-стекла составит +11°С. Подобный тип стекол чаще всего монтируются внутри стеклопакета, то такой недостаток практически не оказывает влияния на эксплуатационные характеристики.
Теплопотери стеклопакетов происходят по трём направлениям:
Тепловое излучение — строительные материалы обладают большей или меньшей способностью излучать теплоту (все строительные материалы). Формула показывает, что интенсивность излучения резко возрастает с повышением температуры поверхности тела.
Величина коэффициента излучения зависит от химического состава излучающего вещества, а также от характера обработки излучающей поверхности. Полированные поверхности имеют значительно меньший коэффициент излучения, чем шероховатые поверхности того же материала. Потери, вызванные тепловым излучением составляют 2/3 всех тепловых потерь в стеклопакетах. Их можно уменьшить на 96% при использовании так называемых энергосберегающих стёкол, суть которых состоит в том, что на их внутреннюю поверхность нанесено тончайшее покрытие из оксидов металлов (толщиной в десятки нанометров), которое практически незаметно на глаз, но весьма эффективно отражает инфракрасное излучение.
Теплопроводность — величина теплосопротивления для стекла толщиной 4 мм R = 0,004/0,76 = 0,005 м²·°С/Вт. При требуемой величине R = 1 стекло практически не оказывает никакого влияния. Камера между стёклами — это и есть основной и единственный утеплитель в стеклопакетах. Чаще всего в камерах находится воздух, однако для улучшения характеристик сопротивления теплопередаче внутрь стеклопакета могут быть закачаны другие газы, имеющие меньшую теплопроводность — углекислый газ, аргон, ксенон, криптон, их смеси и др. Одноатомные газы с большим молекулярным весом резко снижают теплопроводность стеклопакета. Существует технология по изготовлению стеклопакетов с вакуумной прослойкой, но она достаточно редка. При такой технологии два стекла отстоят друг от друга на расстоянии менее миллиметра, а для предотвращения их слипания между стёклами находятся распорки (пиллары) из металла или стеклокерамики с шагом 2–4 см.
При повышенной влажности теплопроводность повышается в несколько раз, поэтому в дистанционных рамках по периметру стеклопакетов обычно устанавливают осушители. Ну не только поэтому, ещё и с конденсатом нужно бороться.
Конвекция — существует распространённое заблуждение, что чем больше будет ширина воздушной (газовой) прослойки, тем теплее стеклопакет. Это не совсем так! С ростом межстекольного пространства до
16 мм (в каждой камере) теплоизоляционные характеристики стеклопакета растут, но свыше 24 мм начинают ухудшаться, в силу роста конвективной теплопередачи в межстекольном пространстве. Воздух, нагреваясь возле внутреннего стекла поднимается вверх, а охлаждаясь возле наружнего стекла опускается вниз. Чем больше будет дистанция между стёклами, тем слабее будут взаимодействовать оба этих потока воздуха (газа) в центральной части стеклопакета. Это значит, что воздух будет сильнее нагреваться возле внутреннего стекла и больше отдавать тепла наружному стеклу — это и есть явление конвекции.
Количество теплоты, передаваемой конвекцией, зависит от характера движения газообразной среды, ее плотности, вязкости и температуры, состояния поверхности твердого тела, величины температурного перепада между воздухом и поверхностью и пр.
Предлагаем изучить уже вычисленные и проверенные данные в соответствии с табличкой ниже
Даже простой стеклопакет из двух стёкол уменьшает потери тепла по сравнению с традиционным двойным остеклением на 30-40% и снижает уровень шума в полтора раза. Так-же интересно видеть, что однокамерный стеклопакет с одним I-стеклом заметно теплее, чем двухкамерный, но с обычными стёклами! Ну и как отмечено в примечаниях к таблице — заполнение аргоном или другим инертным газом практически не даёт эффекта без использования энергоэффективных стёкол!
Очень распространено применение энергосберегающего стеклопакета. Его преимущество перед обычным заключается в том, что значительно снижаются энергозатраты на отопление помещений, уменьшаются теплопотери (по своим теплосберегающим свойствам он превосходит обычный в 21 раз), и всё это приводит к большему климатическому комфорту для людей. Благодаря высокой теплоизоляции можно избежать неприятных холодных потоков воздуха около окна. Температура поверхности внутреннего стекла становится сравнимой с температурой внутри здания.
Исходя из вышесказанного следует следующее, что установив хороший стеклопакет с сопротивлением теплопередаче 1,55 (м2*С)/Вт Вы получаете стену равную :
-96,5 см кирпичной кладки в два кирпича
-8,8 см минераловатной плиты
-33, 2 см газо/пенобетон 600
-21,6 см газо/пенобетон 400
Итого, подводим итоги, на сколько может быть теплым ваш дом, даже если он на 30% состоит из правильно подобранного стекла (стеклопакета). стекла. Делаем выводы и не боимся строить красивые и современные домики в стиле «фахверк».
Коэффициент сопротивления теплопередачи стеклопакетов
Чтобы зимой и летом у вас в доме всегда был оптимальный климат, вам нужно установить на окнах качественные стеклопакеты. Это позволит сэкономить потребление электрической энергии на:
Важно учитывать все критерии выбора подходящих для вас стеклопакетов. Почему при выборе стеклопакетов нужно знать их коэффициент теплопередачи?
Если рассматривать понятие теплопередачи, то она представляет собой передачу теплоты от одной среды к другой. При этом температура в той, которая отдает тепло выше, чем во второй. Весь процесс осуществляется сквозь конструкцию между ними.
Коэффициент теплопередачи стеклопакета выражается количеством тепла ( Вт), проходящем через м2 с разницей температур в двух средах 1 градус: Ro (м2. ̊С/Вт) – это значение действует на территории Российской Федерации. Оно служит для правильной оценки теплозащитных свойств строительных конструкций.
Расчет коэффициента теплопроводности
К или коэффициент теплопроводности выражается количеством тепла в Вт, проходящим через 1 м2 ограждающей конструкции с разницей температур в обеих средах 1 градус по шкале Кельвина. А измеряется он в Вт/м2.
Теплопроводность стеклопакета показывает, насколько эффективными изоляционными свойствами он обладает. Маленькое значение k означает небольшую теплопередачу и, соответственно, незначительную потерю тепла через конструкцию. В то же самое время теплоизоляционные свойства такого стеклопакета являются достаточно высокими.
Однако упрощенный пересчет k в величину Ro (k=1/Ro) не может считаться правильным. Это связано с разницей применяемых методик измерения в РФ и других государствах. Производитель представляет потребителям показатель теплопроводности только в том случае, если продукция прошла обязательную сертификацию.
Самая высокая теплопроводность у металлов, а самая низкая у воздуха. Из этого следует, что у изделия, имеющего много воздушных камер, низкая теплопроводность. Поэтому оно оптимально для пользователей, использующих строительные конструкции.
Таблица сопротивления теплопередаче стеклопакетов
п/п | Заполнение светового проема | R, м^(2)·°С/Вт | |
---|---|---|---|
Материал переплета | |||
Дерево или ПВХ | Алюминий | ||
1 | Двойное остекление в спаренных переплетах | 0.4 | – |
2 | Двойное остекление в раздельных переплетах | 0.44 | – |
3 | Тройное остекление в раздельно-спаренных переплетах | 0.56 | 0.46 |
4 | Однокамерный стеклопакет ( два стекла ) : | ||
обычного (с расстоянием между стекол 6 мм) | 0.31 | – | |
с И – покрытием (с расстоянием между стекол 6 мм) | 0.39 | – | |
обычного (с расстоянием между стекол 16 мм) | 0.38 | 0.34 | |
с И – покрытием (с расстоянием между стекол 16 мм) | 0.56 | 0.47 | |
5 | Двухкамерный стеклопакет ( три стекла ): | ||
oбычного (с расстоянием между стекол 8 мм) | 0.51 | 0.43 | |
oбычного (с расстоянием между стекол 12 мм) | 0.54 | 0.45 | |
с И – покрытием одно из трёх стекол | 0.68 | 0.52 |
*Основные ( популярные ) типы стеклопакетов выделены красным цветом.
Технические характеристики стеклопакетов
Количество камер изделия влияет на теплосопротивление стеклопакета даже, если стекла имеют одинаковую толщину. Чем больше в конструкции предусмотрено камер, тем она будет более теплосберегающей.
Последние современные конструкции отличают более высокие теплотехнические характеристики стеклопакетов. Чтобы добиться максимального значения сопротивления теплопередаче, современные компании-производители оконной индустрии заполнили камеры изделий с помощью специального наполнения инертными газами и нанесли на поверхность стекла низкоэмиссионного покрытие.
Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.
Перенос тепла в такой современной конструкции между стеклами происходит благодаря излучению. Эффективность сопротивления теплопередачи при этом увеличивается в 2 раза, если сравнивать данную конструкцию с обычной. Покрытие, обладающее теплоотражающими свойствами, способно намного снизить теплообмен лучей, происходящий между стеклами. Используемый для заполнения камер аргон позволяет уменьшить теплопроводность с конвекцией в прослойке между стеклами.
В результате газовое наполнение вместе с низкоэмиссионным покрытием увеличивают сопротивление теплопередаче стеклопакетов на 80%, если сравнивать их с обычными стеклопакетами, которые не являются энергосберегающими.
Тенденции, наметившиеся в оконной индустрии
Стеклопакет, занимающий не менее 70% от оконной конструкции, был усовершенствован, чтобы максимально снизить теплопотери через него. Благодаря внедрению в производство новых разработок, на рынке появились селективные стекла, имеющие специальное покрытие:
- К-стекло, характеризующееся твердым покрытием;
- i-стекло, характеризующееся мягким покрытием.
На сегодняшний день все больше потребителей предпочитают стеклопакеты с i-стеклами, теплоизоляционные характеристики которых выше, чем у К-стекол в 1,5 раза. Если обратиться к данным статистики, то продажи стеклопакетов с нанесенными теплосберегающими покрытиями увеличилось до 70% от объема всех продаж в США, до 95% в Западной Европе, до 45% в России. А значения коэффициента сопротивления теплопередаче стеклопакетов варьируется от 0.60 до 1.15 м2 *0СВт.
Сопротивление теплопередаче светопрозрачных конструкций
Анализ структуры общих теплопотерь в жилых зданиях показывает, что через световые проемы теряется до 15 — 30 % тепла. При этом значительная его часть уходит через места примыкания окон к стенам и через откосы. Уровень теплозащитных свойств ограждений характеризуется величиной приведенного сопротивления теплопередаче.
Теплопередача — перенос теплоты через ограждающую конструкцию от среды с более высокой температурой к среде с более низкой температурой. Коэффициент теплопередачи характеризует количество тепла в ваттах (Вт), которое проходит через один квадратный метр конструкции при разности температур по обе стороны в один градус —Ro (м²·°C/Вт) — величина, принятая в России для оценки теплозащитных характеристик материалов или конструкций, обратная коэффициенту теплопроводности k, который принят в нормах DIN.
Коэффициент теплопроводности k характеризует количество тепла в ваттах (Вт), которое проходит через 1 м² конструкции при разности температур по обе стороны в один градус по шкале Кельвина (К), единица измерения Вт/м² К. Чем меньше значение k, тем меньше теплопередача через конструкцию, т.е. выше ее изоляционные свойства.
К сожалению, простой пересчет k в Ro (k=1/Ro) не вполне корректен из-за различия методик измерений в России и других странах. Однако, если продукция прошла сертификацию, то производитель обязан представить заказчику именно показатель теплопроводности.
Ro тр — требуемые значения коэффициента сопротивления теплопередаче для каждого региона нашей страны определяется в соответствии с продолжительностью отопительного периода. Сопротивление теплопередаче рассчитывается по формуле:
Чем больше этот показатель, тем меньше теплопередача через конструкцию. Требуемые значения коэффициента сопротивления теплопередаче для каждого региона нашей страны определяется в соответствии с продолжительностью отопительного периода.
Рассчитать самостоятельно сопротивление теплопередачи оконной конструкции несложно, для этого необходимы:
- данные по сопротивлению теплопередачи профиля, которые предоставляют производители 2 ;Файл:Sp profil.doc
- данные по сопротивлению теплопередачи стеклопакета, в соответствии с ГОСТ 24866-89 «Стеклопакеты клееные строительного назначения. Технические условия»
где, Foc— площадь остекления (светопрозрачная часть окна, без учета профиля створки/коробки/импоста)
F пер- площадь непрозрачной части конструкции окна
Естественно, большое значение имеют внешние климатические условия. Понятно, что окна, которые подойдут для остекления домов в Сочи, вряд ли устроят жителей Воркуты. Поэтому, при выборе окна, необходимо обращать внимание на параметры теплозащиты с учетом климатических условий, в которых они будут использоваться.
Пример: Рассчитаем сопротивление теплопередаче оконного блока из профиля VEKA PROLINE (4-камерный профиль, шириной 70 мм) и двухкамерного стеклопакета 4-10-4-10-4. Исходные данные ( от производителя профиля):
Высота профиля (рама со створкой) -112 мм.
Высота створки-77 мм.
Комбинация створок и импоста — около 187 мм.
Вычисляем площадь непрозрачной части Fпер: (0,112*1,5)*2+(1,5*0,187)+ (1,4-0,112-0,187)*2*0,112= 0,87 кв.м
Площадь остекления Foc= (1.4*1.5)-0.87= 1.23 кв.м
Теперь вычислим значение: 0.58
Располагая всеми необходимыми данными мы можем вычислить коэффициент сопротивления теплопередаче: 0.56 м²·°C/Вт
Сопротивление теплопередаче, характеризующее теплозащиту наружных ограждающих конструкций, в том числе окон нормируется СНиП II-3-79 «Строительная теплотехника», а также введенным с 01.10.03г. СНиП 23-02-2003 «Тепловая защита зданий»
Приведенное сопротивление теплопередаче , Ro м²·°C/Вт, ограждающих конструкций, а также окон и фонарей (с вертикальным остеклением или с углом наклона более 45°) следует принимать не менее нормируемых значений ,Rтро м²·°C/Вт, определяемых по таблице 4 СНиП 23-02-2003 в зависимости от градусо-суток района строительства.
Показатель градусосуток рассчитывается по следующей формуле: ГСОП = (Тв — Тот.пер.) • Zот.пер, где Тв — расчетная средняя температура внутреннего воздуха здания, °С, принимаемая для расчета ограждающих конструкций группы зданий по поз.1 таблицы 4 по минимальным значениям оптимальной температуры соответствующих зданий по ГОСТ 30494 и приложению СанПиН 2.1.2.2645-10 (в интервале 18-24°С), то же, в районах наиболее холодной пятидневки (- 31°С и ниже)
Тот.пер. и Zот.пер.- средняя температура наружного воздуха, °С, и продолжительность, сут, отопительного периода, принимаемые по СНиП 23-01-99 «Строительная климатология» для периода со средней суточной температурой наружного воздуха не более 10 °С — при проектировании лечебно-профилактических, детских учреждений и домов-интернатов для престарелых, и не более 8 °С — в остальных случаях.
Рассчитаем показатель «градусосуток» для Московского региона: ГСОП= (20-(-3,1))x214= 4943
Теперь методом интерполяции [1] — определим значение сопротивления теплопередаче для Москвы: Ro= 0,45+ (4943-4000)/(6000-4000)x((0.6-0.45)/1)= 0.45+0.071=0.52м²·°C/Вт
По состоянию на 2011г. в Москве действует МГСН 2.01-99 «»Энергосбережение в зданиях», в соответствии с которым приведенное сопротивление теплопередаче для окон следует принимать 0,54 м²·°C/Вт для окон, балконных дверей и витражей; 0,81 м²·°C/Вт для глухой части балконных дверей.
На показатель сопротивления теплопередаче окон влияют несколько факторов:
- размеры окна в целом и его рам и створок;
- материалы блока окон (ПВХ, дерево, алюминий);
- тип остекления( в том числе ширина дистанционной рамки стеклопакета, наличие И- стекла и специального газа в стеклопакете);
- число и расположение утеплителей в системе рама/створка.
- устройство монтажного шва по ГОСТ 30971-02 «Швы монтажные узлов примыканий оконных блоков к стеновым проемам»
ГОСТ 26602.1 «Блоки оконные и дверные. Методы определения сопротивления теплопередаче» устанавливает методы определения сопротивления теплопередаче оконных и дверных остекленных блоков и их элементов (далее — оконных блоков), изготавливаемых из различных материалов, для отапливаемых зданий и сооружений различного назначения.
Кроме общероссийских нормативных документов существуют еще и местные, в которых определенные требования для данного региона могут быть ужесточены.
Из ГОСТ 23166-99 «Блоки оконные Общие технические условия» по показателю приведенного сопротивления теплопередаче, изделия подразделяют на классы:
А1 — с сопротивлением теплопередаче 0,80 м²·°C/Вт и более А2 — с сопротивлением теплопередаче 0,75-0,79 м²·°C/Вт Б1 — с сопротивлением теплопередаче 0,70-0,74 м²·°C/Вт Б2 — с сопротивлением теплопередаче 0,65-0,69 м²·°C/Вт В1 — с сопротивлением теплопередаче 0,60-0,64 м²·°C/Вт В2 — с сопротивлением теплопередаче 0,55-0,59 м²·°C/Вт Г1 — с сопротивлением теплопередаче 0,50-0,54 м²·°C/Вт Г2 — с сопротивлением теплопередаче 0,45-0,49 м²·°C/Вт Д1 — с сопротивлением теплопередаче 0,40-0,44 м²·°C/Вт Д2 — с сопротивлением теплопередаче 0,35-0,39 м²·°C/Вт В соответствии со статьями 6 и 11 Федерального закона РФ от 23 ноября 2009 года «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты российской федерации» вышел приказ от 17 мая 2011 г. № 224 «Об утверждении требований энергетической эффективности зданий, строений, сооружений» где требования энергетической эффективности определяются нормируемым показателем суммарного удельного годового расхода тепловой энергии на отопление, вентиляцию и горячее водоснабжение, уменьшенным по отношению к показателю годового расхода тепловой энергии на отопление, вентиляцию и горячее водоснабжение соответствующего базового уровня требований энергетической эффективности:
- на 15 % по отношению к базовому уровню со дня вступления в силу требований энергетической эффективности;
- на 30 % по отношению к базовому уровню с 1 января 2016 года;
- на 40 % по отношению к базовому уровню с 1 января 2020 года.
в соответствии с которым коэффициент сопротивления теплопередаче оконных конструкций может быть увеличен.
К сожалению, эффект от проведения теплосберегающих мероприятий пока ощущают только муниципалитеты. В квартирах нет индивидуальных теплосчетчиков, поэтому экономия тепла для жителей не ощутима. Если муниципалитет дотирует тарифы на тепло, то утепление домов сказывается на объеме дотаций. Но суммы эти в бюджете мало ощутимы, поскольку относительная доля утепленных домов пока мала.
Другое дело, когда житель имеет возможность регулировать теплоподачу сам, напрямую ощущая экономию. Законом «Об энергосбережении . » предусмотрено, что с 2012 года вновь построенные и реконструируемые дома должны иметь системы индивидуального учета потребления тепла в квартирах. Но вопрос пока не проработан, поскольку нет коммерческой практики индивидуального учета тепла в многоквартирных домах.
Примечания
- ↑ Интерполяция — способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.
2 Статья подготовлена на примере ПВХ профилей.
Теплые алюминиевые окна
По своим прочностным свойствам, высокой коррозионной стойкости и способности принимать сложную форму поперечного сечения алюминиевые профили представляются весьма подходящим материалом для изготовления каркасов для окон и других различных видов остекления зданий. Однако алюминий имеет настолько высокую теплопроводность, что температура рамы окна, которая полностью изготовлена из алюминиевых профилей снаружи и внутри здания практически не отличается, причем как зимой, так и летом.
Теплые алюминиевые окна
Решением этой проблемы являются так называемые комбинированные профили, которые называют также «теплыми» алюминиевыми профилями. Эти профили состоят из двух алюминиевых профилей – наружного и внутреннего, которые соединяются друг с другом через материал с низкой теплопроводностью, таким как полиамид, полиуретан или поливинилхлорид. Говорят, что этот материал с низкой теплопроводностью образует терморазрыв, а такие профили называют также алюминиевыми профилями с терморазрывом.
Европейский стандарт EN 14024 и международные стандарты ISO 10077 и ISO 15099 применяют термин «thermal barrier», то есть «термический барьер», а американские нормативные документы – термин «thermal break». Российские стандарты, например, ГОСТ 22233-2001 на алюминиевые профили применяют термин «термовставка».
Алюминиевые профили для окон и дверей
Европейский стандарт EN 14024 устанавливает два типа терморазрыва для металлических профилей, в том числе, для алюминиевых профилей (рисунок 1).
Рисунок 1 – Два типа терморазрыва в алюминиевых профилях
Первая технология изготовления алюминиевого профиля с терморазрывом заключается в том, что две противоположных кромки полиамидного профиля вставляют в специальные пазы алюминиевых профилей, наружного и внутреннего. Затем производится закатка кромок этих пазов, что обеспечивает прочное соединение термомоста с каждым из алюминиевых профилей, а алюминиевых профилей друг с другом.
Вторая технология изготовления алюминиевых профилей с терморазрывом включает заливку жидкого полиуретана в алюминиевый профиль, который имеет специальные пазы. Затем, после затвердевания полиуретана, тонкие «перепонки» между наружной и внутренней частью алюминиевого профиля удаляют – вырывают или фрезеруют – и получается алюминиевый профиль с терморазрывом.
Теплопередача и теплопроводность
Коэффициент теплопередачи окна – любого окна, алюминиевого, деревянного, пластикового – это количество тепла, которое проходит в единицу времени через единицу площади окна на 1 градус разности температуры между обеими сторонами окна – наружной и внутренней. Поэтому величина коэффициента теплопередачи измеряется в Вт/(м 2 ·К) или «в ваттах на метр квадратный на градус Кельвина».
Алюминиевые, пластиковые и деревянные окна отличаются друг от друга материалом рамы. Вклад рамы в коэффициент теплопередачи этих окон может весьма сильно различаться. Это связано в первую очередь с различиями в коэффициентах теплопроводности этих материалов: алюминия, пластика ПВХ и древесины.
Нелишне отметить, что теплопроводность – это физическое свойство материала, например, древесины рамы окна. Коэффициент теплопроводности отражает способность материала передавать тепло на расстояние под воздействием перепада температуры и поэтому имеет размерность Вт/(м·К). Иными словами, это – количество тепла на единицу длины при перепаде температуры в один градус (Кельвина или Цельсия).
Коэффициент теплопередачи в отличие от коэффициента теплопроводности – это характеристика окна как физического тела. Коэффициент теплопередачи окна отражает его способность сопротивляться пропусканию через себя тепла под воздействием перепада температуры на внутренней и наружной своих поверхностях. Поэтому коэффициент теплопередачи имеет размерность Вт/(м 2 ·К). Иными словами, это – количество тепла на единицу площади окна при перепаде температуры в один градус.
Теплопередача окна по ISO 10077-1
Самыми надежными методами для определения коэффициента теплопередачи рам окон и окон в целом являются численные методы (например, метод конечных элементов, метод конечных разностей или метод граничных элементов) в соответствии с указаниями стандарта ISO 10077-2. Кроме того применяют стандартизированные экспериментальные методы на основе измерения тепловых потоков через элементы окна и окно в целом.
Стандарт ISO 10077-1 предназначен для оценки коэффициентов теплопередачи окон различной конструкции при отсутствии данных численного расчета и экспериментальных данных.
Для простого глухого окна – окна с рамой без створок и импостов (горизонтальных и вертикальных перекладин) – формула для вычисления коэффициента теплопередачи окна согласно стандарту ISO 10077-1 упрощается до следующего вида:
где:
Ag – площадь светопроникающей части окна;
Af – площадь рамы (проекция на вертикальную плоскость);
lg – длина периметра светопроникающей части окна;
Ψg – линейная теплопередача (на стыке между рамой и светопроникающей частью окна).
Теплопередача пластикового окна
Международный стандарт ISO 10077-1 дает минимальные величины коэффициентов теплопередачи рам окна ПВХ с двумя камерами и тремя камерами. Эти минимальные коэффициенты теплопередачи рам окон ПВХ – металлопластиковых окон – составляют соответственно 2,2 и 2,0 Вт/м 2 ·К.
Рисунок 2 – Минимальный коэффициент теплопередачи окон ПВХ
Обычно рамы окон ПВХ имеют именно 3 камеры. Встречаются рамы ПВХ с 4-мя и даже 5-тью камерами, но они дороже обычных. Стандарт ISO 10077-1 указывает, что камерой окна ПВХ может считаться только полость шириной не менее 5 мм. Данных о коэффициенте теплопередачи рам таких «экзотических» окон ПВХ стандарт не приводит.
Рисунок 3 – Минимальная ширина камеры рамы окна ПВХ
Теплопередача деревянного окна
На рисунке 4 приведен график зависимости минимального коэффициента теплопередачи рамы деревянного окна, во-первых, от типа древесины (мягкая или твердая) и, во-вторых, от толщины рамы.
Рисунок 4 – Коэффициент теплопередачи деревянных рам
1 – твердые породы (700 кг/куб. м и 0,18 Вт/м К);
2 -мягкие породы (500 кг/куб. м и 0,13 Вт/м К)
Для типичной толщины деревянного окна 50 мм коэффициент теплопередачи рамы составляет для мягких пород 2,0 Вт/м2 К, а для твердых пород – 2,2 Вт/м2 К. С увеличением толщины рамы за 150 мм коэффициент теплопередачи рамы приближается к единице.
Теплопередача алюминиевой рамы
Терморазрыв алюминиевой рамы
На рисунке 5 показаны основные конструкционные характеристики алюминиевой рамы с терморазвязкой в виде полиамидных вставок.
Рисунок 5 – Алюминиевая рама с полиамидными вставками:
0,2 2 К)
b1 + b2 + b3 + b4 ≤ 0,2 bf
Коэффициент теплопередачи оконной рамы из алюминиевых профилей с терморазрывом зависит от:
- коэффициента теплопроводности материала терморазрыва;
- длины терморазрыва, d, то есть минимального расстояния между наружным и внутренним алюминиевыми профилями;
- ширины терморазрыва, b1+b2+b3+b4;
- отношения общей ширины терморазрыва (b1+b2+b3+b4) к ширине рамы bf.
Длина терморазрыва
Производители алюминиевых окон обычно декларируют длину (или ширину) полиамидных вставок, которые образуют терморазрыв в алюминиевых профилях рамы. Однако эти полиамидные вставки имеют заделку в алюминиевых профилях не менее 2,5 мм с каждой стороны. Поэтому, если применяются полиамидные вставки, например, длиной 34 мм, то они обеспечивают эффективный терморазрыв в лучшем случае длиной всего 29 мм.
Формула
Формула для вычисления коэффициента теплопередачи рамы алюминиевого окна выглядит следующим образом:
где
Af,i /Af,di – отношение площади проекции внутренней поверхности рамы на плоскость окна к полной внутренней поверхности рамы (рисунок 6);
Af,e /Af,de – отношение площади проекции наружной поверхности рамы на плоскость окна к полной наружной поверхности рамы (рисунок 6);
Rsi – сопротивление теплопередаче внутренней поверхности рамы (прослойки воздуха на внутренней поверхности рамы), (м 2 ·К)/Вт;
Rse – сопротивление теплопередаче наружной поверхности рамы (прослойки воздуха на наружной поверхности рамы), (м 2 ·К)/Вт;
Rf – сопротивление теплопередаче сечения рамы, (м 2 ·К)/Вт.
Рисунок 6 – Параметры формы алюминиевой рамы,
которые влияют на величину ее коэффициета теплопередачи
Сопротивление теплопередаче алюминиевой рамы
Сопротивление рамы алюминиевого окна без терморазрыва принимается равным нулю: Rf = 0.
Минимальное сопротивление алюминиевой рамы в зависимости от длины терморазрыва d принимается по сплошной линии графика на рисунке 7.
Рисунок 7 – Величины Rf для алюминиевой рамы с терморазрывом
Заштрихованная область на рисунке 7 выше сплошной линии соответствует величинам сопротивления теплопередаче рамы, полученным для различных алюминиевых окон при различных условиях в различных европейских странах. Поэтому верхнюю линию надо понимать как практический максимум сопротивления теплопередаче алюминиевых рам для заданных величин терморазрыва d.
Наружная и внутрення поверхности рамы
Величины сопротивления теплопередаче внутренней и наружной поверхностей рамы вертикального окна по ISO 10077-1 принимаются:
- Rsi = 0,13 м 2 ·К/Вт (для внутренней поверхности рамы);
- Rse = 0,04 м 2 ·К/Вт (для наружной поверхности рамы).
Теплопередачи алюминиевой рамы
При заданной длине терморазрыва d максимальная величина коэффициента теплопередачи алюминиевой рамы по формуле достигается при Ai = A >
Алюминиевая рама без терморазрыва
Для алюминиевой рамы без терморазрыва принимается Rf = 0, что дает
Uf = 1/(0 + 0,17) = 5,9 Вт/м 2 ·К
Алюминиевая рама с терморазрывом d = 19 мм
Для полиамидной термовставки 24 мм
1) Минимальная величина сопротивления теплопередаче алюминиевой рамы (по сплошной линии графика рисунка 7):
2) Максимальная величина сопротивления теплопередаче алюминиевой рамы (по пунктирной линии графика рисунка 7):
3) Максимальный (худший) коэффициент теплопередачи рамы с d = 19 мм:
Uf = 1/(0,18 + 0,17) = 1/0,35 = 2,9 Вт/м 2 К.
4) Минимальный (лучший) коэффициент теплопередачи рамы с d = 19 мм:
Uf = 1/(0,30 + 0,17) = 1/0,47 = 2,1 Вт/м 2 К.
Алюминиевая рама с терморазрывом d = 28 мм
Для термовставки 33 мм
1) Минимальная величина сопротивления теплопередаче алюминиевой рамы (по сплошной линии графика рисунка 7):
2) Максимальная величина сопротивления теплопередаче алюминиевой рамы (по пунктирной линии графика рисунка 7):
3) Максимальный (худший) коэффициент теплопередачи рамы с d = 28 мм:
Uf = 1/(0,22 + 0,17) = 1/0,39 = 2,6 Вт/м 2 К.
4) Минимальный (лучший) коэффициент теплопередачи рамы с d = 28 мм:
Uf = 1/(0,35 + 0,17) = 1/0,52 = 1,9 Вт/м 2 К.
Коэффициент теплопередачи алюминиевого окна
На основании известного коэффициента теплопередачи алюминиевой рамы и известного коэффициента теплопередачи стеклопакета (таблица 1) по соответствующим таблицам производится определение минимального коэффициента теплопередачи всего окна.
Таблица 1 – Коэффициенты теплопередачи стеклопакетов (фрагмент)
Стандарт ISO 10077-1 дает четыре таблицы для определения коэффициента теплопередачи окан в зависимости от отношения площади рамы к общей площади окна – 20 и 30 %, а также для различных типов спейсеров стеклопакетов – обычных и с улучшенными тепловыми характеристиками.
Таблица 2 – Коэффициенты теплопередачи окон с отношением площади рамы 20 % от общей площади окна (стеклопакеты с обычными спейсерами) – алюминиевые рамы
Таблица 3 – Коэффициенты теплопередачи окон с отношением площади рамы 30 % от общей площади окна (стеклопакеты с обычными спейсерами) – рамы пластиковые и деревянные
- Рамы деревянных окон имеют самый низкий (самый лучший) коэффициент теплопередачи. При толщине рамы деревянной рамы 50 мм коэффициент теплопередачи рамы составляет около 2,0 Вт/м 2 ·К. При увеличении толщины деревянной рамы до 100 мм коэффициент теплопередачи рамы снижается до 1,5 Вт/м 2 ·К, а до 150 мм – до 1,0 Вт/м 2 ·К.
- Лучшие алюминиевые окна способны обеспечивать коэффициент теплопередачи до 1,9 Вт/м 2 ·К. “Худшие” трехкамерные металлопластиковые окна имеют раму с коэффициентом теплопередачи около 2,2 Вт/м 2 ·К. То есть, худшие пластиковые окна могут быть хуже лучших алюминиевых окон.
- Более высокая прочность алюминиевых сплавов по сравнению с пластиками и древесиной позволяет снижать ширину рамы окна. Доля площади рамы типичного алюминиевого окна составляет около 20 %, тогда как у пластиковых и деревянных окон – около 30 %.
Поскольку коэффициент теплопередачи хорошего стеклопакета всегда ниже, чем коэффициент теплопередачи любой рамы, то это дает алюминиевым окнам возможность конкурировать с окнами других типов, в первую очередь, с пластиковыми, по тепловой эффективности. Остается, правда, вопрос возможного выпадения конденсата на алюминиевой раме.
Сопротивление теплопередаче окон: проводим расчет самостоятельно
Каждый современный житель хочет, чтобы его дом был не только уютным, но и теплым. Специально для этого проводится монтаж «теплого пола», а также применяется комплекс работ по утеплению стен, балконов и кровли. Но при выборе оконных конструкций чрезвычайно важно обращать внимание на приведенное сопротивление теплопередаче. Сегодня почти все изготовители такой продукции в качестве рекламы используют громкие фразы, обещающие сделать помещения дома максимально теплыми. В советские времена абсолютно в каждом доме были деревянные окна, которые приходилось дополнительно утеплять клейкими лентами и различными тканевыми материалами. Но сейчас все изменилось, и такие конструкции стремительно заменяют изделия из ПВХ от различных производителей. Таблица сопротивления для светопрозрачных блоков
Именно поэтому почти все рекламные кампании, агитирующие приобрести ту или иную продукцию, направлены на то, чтобы описывать достоинства материалов рамы (это может быть древесина, прочный пластик или высококачественный алюминий), определенный класс профилей в зависимости от количества камер, которые имеет каждое конкретное изделие, а также, разумеется, превосходные теплоизоляционные характеристики. Но тут сразу же возникают некоторые противоречия, ведь, как известно, оконная конструкция состоит не только из рамы. Основная часть изделия – это большая остекленная поверхность, которая изготовлена из всевозможных типов стекол или же цельных стеклопакетов, имеющих совершенно иной коэффициент сопротивления.
» alt=»»>
Таблица нормируемого сопротивления оконных конструкций РФ (отопительный сезон)
Почему важно правильно определить теплопередачу оконной конструкции?
Как уже было сказано, главной функцией любого стеклопакета является удержание тепла в помещениях дома. Существует определенное суждение, что пластиковые изделия в разы теплее, нежели деревянные конструкции. Но это мнение субъективно, потому что материал рамы, как уже было сказано, играет далеко не самую важную роль. Формула, описывающая данный параметр, предельно проста и известна нам еще с программы по физике за 8 класс. Она описывает силу потока энергии, который покидает помещение сквозь преграду в 1 квадратный метр площади при разнице температурных показателей в 1 градус. Стоит отметить, что чем меньше показатель U, тем, соответственно, лучше приведенное сопротивление. Разобраться в расчетах без проблем сможет любой опытный специалист в строительной отрасли, но простой человек может счесть формулу достаточно сложной и замысловатой. Но наши соотечественники привыкли жить по принципу «чем больше показатель, тем лучше» либо же просто доверяют тому, что каждый поставщик указывает класс изделия и его характеристики. Но они не всегда соответствуют действительности, поэтому для уверенности стоит перепроверить эти сведения. Именно поэтому в последнее время в оборот была введена величина, имеющая название «сопротивление теплопередаче». Для того чтобы обозначать ее в формуле, используют символ R. Минимальный коэффициент теплопередачи окон ПВХ
Формула выглядит следующим образом: R = 1/U.
Пример расчетов
Для того чтобы привести пример, можно выбрать обычное одностворчатое окно, имеющее ширину W = 1 метр 40 сантиметров, а высота H = 1 метр, выполненное из трехкамерного профиля VEKO EUROLINE с шириной ограждающей рамы-створки 1,13 миллиметра. Учитывая неоднородность изделия, первым делом важно определить сопротивление каждого участка и выяснить их класс и площадь.
В большинстве случаев работа ведется с 2 зонами (однородными по своей структуре):
- зона рамы и стекла (в общем);
- зона стеклопакета отдельно.
Для расчета первого показателя используем следующую формулу:
F1 = [1,4 x 0,113] + 1,4 x 0,113 + [1 – 0,113 х 2] х 0,113 + [1 – 0,113 х 2] х 0,113 = 0,491 324.
А вторая зона определяется следующим образом:
F2 = [1,4 – 0,113 х 2] х [1 – 0,113 х 2] = 0,908 676 метра квадратного.
В результате мы получаем:
F1 = 0,491 324 метра квадратного;
F2 = 0,908 676 м2;
Ro2 = 0,32 м2С/Вт.
» alt=»»>
Схема сравнительных характеристик стеклопакетов
Как итог можно отметить, что, несмотря на то, что выбранная оконная конструкция имеет отличный показатель теплопроводности рамы, теплопроводность цельного продукта оставляет желать лучшего. Благодаря проведению таких расчетов появляется возможность должным образом оценить коэффициент теплопроводности, а главное, то количество тепла, которое будет удерживаться в помещении на протяжении определенного времени. При выборе самой конструкции обязательно обращайте внимание не только на внешний вид и габариты изделия, но и на теплосберегающие свойства, которые будут обеспечивать оптимальный микроклимат. Продукция бюджетного класса часто имеет высокий показатель, поэтому в процессе эксплуатации жильцы квартир и домов, в которых был проведен монтаж пластиковых окон, нередко жалуются на то, что даже изделия ПВХ не способны должным образом сохранять тепло. Если вы столкнулись с такой проблемой, то не спешите менять стеклопакеты. Первым делом проведите расчеты и обязательно проверьте, насколько правильно был осуществлен монтаж и нет ли видимых щелей между проемом и окном. Таблица характеристик деревянных окон со стеклопакетами
Проведение расчетов: самостоятельно или обратиться к специалисту?
Необходимо сказать, что определить сопротивление теплопередаче окон самостоятельно, не имея опыта и навыков в этом деле, не так просто. Лучший и наиболее оптимальный вариант – обратиться за помощью к специалисту, который наверняка знает, как именно проводить расчеты, чтобы в результате не было никаких ошибок, а погрешности были минимальными. Если у вас нет знакомых в строительной отрасли, а финансовое положение не позволяет оплатить услуги профессионалов, то вы можете воспользоваться специальным калькулятором, который в режиме реального времени поможет определить, насколько соответствуют характеристики изделия приведенному сопротивлению. Кроме того, методика расчетов в таком случае весьма проста и понятна. Разобраться в ней можно самостоятельно, поэтому определить площадь однородных зон для каждого конкретного элемента можно будет достаточно быстро. Практически все теплотехнические свойства представлены в тематических таблицах и вырезках из нормативно-технической документации. Они размещены в свободном доступе в Интернете на различных форумах и строительных порталах. Схема размещения термопар и тепломеров на образце оконного блока (по ГОСТу).
Полезная информация и рекомендации
Важно отметить, что специалисты в области строительства выделяют несколько типов сопротивления, а именно:
- приведенное;
- термическое;
- нормативное.
» alt=»»>
Они все отличаются характеристиками измерения, а также способом обеспечения теплоотдачи. Разберем детально каждый из них. Первым делом следует сказать, что сегодня на территории нашего государства действует нормативно-техническая документация, которая устанавливает требования к тепловой защите сооружений (Свод правил 50.13330.2012).
Базовые значения необходимого сопротивления для сооружений
Изменение нормативов по коэффициентам сопротивления теплопередаче в регионах
Валерий Козионов, технический эксперт Декёнинк РУС, комментирует изменение нормативов в обновленной редакции основополагающего документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий» и новые требования к энергоэффективности светопрозрачных конструкций.
Для чего нужны более теплые стены и более теплые окна, зачем повышать нормативный коэффициент сопротивления теплопередаче конструкции? На первый взгляд – всё очевидно. Тем не менее, давайте разберемся.
Для начала, немного основ строительной физики. Если наружная стена (или ограждающая конструкция в виде окна) в течении продолжительного времени подвержена действию постоянных температур, но со стороны помещения и со стороны улицы температуры различные (стационарное состояние), то благодаря разности температур (градиенту температур) через строительную конструкцию образуется тепловой поток от высшего энергетического уровня к низшему. Тепловая энергия течет от тепла к холоду.
В зависимости от теплотехнических характеристик системы наружной стены, выраженной через коэффициент теплопроводности материала стены l (лямбда), Вт/(м °С) в поперечном сечении стены устанавливается характерное распределение температур.
В более сложных ситуациях (многомерные тепловые потоки) по сравнению с невозмущенной зоной стены (одномерные тепловые потоки) как, например, область присоединения окна к наружной стене, изображение распределения температур может быть представлено только частично. Поэтому предлагается изображение изотерм. Изотерма – это линия, образованная точками с одинаковой температурой. Изотермы рассчитываются и изображаются с помощью программ по методу конечного элемента. На основании расчета изотерм могут быть определены тепловые потоки и распределение температур в поперечном сечении строительной конструкции.
Рис.1 Пример распределения температур и прохождения изотерм в однослойной (монолитной) и многослойной наружной стене Повышая нормативный коэффициент сопротивления теплопередаче R (м 2 °С/Вт), законодатели предписывают архитекторам, проектировщикам и строителям применять материалы и конструкции с более низкой теплопроводностью, которые с одной стороны сохраняют все более ценную энергию для подогрева помещения зимой или для охлаждения их летом, а с другой – повышают температуру на поверхности ограждающих конструкций со стороны помещения, предотвращая риск образования конденсата и грибка и связанные с ними проблемы.
Немного о конденсате и грибке. Воздух обладает свойством в зависимости от своей температуры максимально насыщаться определенным количеством воды в форме водяного пара (объем насыщения). При этом тёплый воздух может насытиться большим количеством воды, чем холодный.
Относительная влажность воздуха обозначает содержание влаги в воздухе по отношению к объему насыщения (= максимально возможное количество). Например, содержание влаги в количестве 8,65 г/м 3 при 20°С соответствует относительной влажности 50%. Для воздуха помещения с температурой 20°С и относительной влажностью 50% это означает, что в воздухе содержится 50% максимально возможного количества воды (17,3 г/м 3 ) в форме водяного пара.
Конденсат образуется в том случае, если воздух из-за охлаждения более не в состоянии сохранять первоначальное количество воды. Температура, при которой начинается этот процесс, называется температурой точки росы или точкой росы.
Рис. 2 Таблица температуры точки росы в зависимости от температуры и относительной влажности (выдержка из DIN 4108-3, таблица А.4) При температуре воздуха 20 °С и относительной влажности 50 % температура точки росы составляет 9,3 °С или округлённо 10 °С (→ 10 °С – изотерма для оценки опасности образования конденсата на поверхности конструкции).
Во избежание конденсата, 10°С — изотерма должна находиться внутри конструкции.
Образование грибка является не только следствием образования конденсата. Исследования показывают, что при условиях благоприятных для роста грибка вследствие капиллярной конденсации грибок может образовываться уже ранее. Благоприятные условия – это относительная влажность воздуха ок. 80% установившаяся в течении длительного времени в приповерхностной зоне с подходящей питательной средой (например, домашняя пыль) для грибка.
Рис. 3 Взаимосвязь температуры точки росы и критической температуры для грибка Как видим из вышесказанного, необходимость повышать теплозащитные свойства ограждающих конструкций — это жизненная необходимость, особенно для стран с таким климатом, как в России.
14.12.2018 Минстрой РФ подписал приказ о введении обновленной редакции основополагающего нормативного документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий». Редакция была разработана Научно-исследовательским институтом строительной физики РААСН совместно с рядом представителей строительной индустрии, научно-исследовательскими институтами и содержит новые требования к энергоэффективности светопрозрачных конструкций, основанные на длительном цикле натурных испытаний.
Требования к сопротивлению теплопередаче светопрозрачных ограждающих конструкций в России устарели по отношению к качеству продукции, представленной на современном рынке остеклений. Окна, выбранные по старым нормам, не могут обеспечить нужный уровень температур внутренней поверхности, не позволяют эффективно сохранять тепло, применять широкие стеклопакеты для повышения шумоизоляции, создать надежный монтажный шов с перекрытием зон холодных изотерм и тепловых мостов.
Рис. 4 Развитие окон на примере деревянных и деревокомпозитных конструкций Новая редакция учитывает современные материалы, методы остекления и дает возможность экономии энергии за счет новых технологий. Были определены новые требования к сопротивлению теплопередаче светопрозрачных конструкций для всех климатических зон России.
Рис.5 Изменения по определению базовых R0 тр. (м2°С/Вт) для жилых зданий ГСОП рассчитываются по прежней формуле (5.2) СП 50.13330.2012. Базовые значения требуемого сопротивления теплопередаче при ГСОП в интервалах от 2000 до 12000 (°С×сут/год) следует определять методом линейной интерполяции.
Так, согласно изменённому СП 50.13330 требуемое приведенное сопротивление теплопередаче светопрозрачной конструкции R0 тр. (м 2 ° С/Вт), например, для Краснодара (ГСОП = 2538 сут.) составит 0,53 (ранее 0,34).
Приказ об утверждении изменений подписан Министром строительства и жилищно-коммунального хозяйства Российской Федерации Владимиром Якушевым 14 декабря 2018 г., а обновлённый СП 50.13330.2012 «СНиП 23-02-2003 Тепловая защита зданий» вступит в силу уже через 6 месяцев со дня публикации на сайте Росстандарта.
Новые требования идут в ногу с трендом энергосбережения, позволяют строить более комфортные жилые и административные здания и вступят в силу уже в середине 2019 года, заменив устаревшие нормы 20 летней давности.
Российские производители оконных профилей и стеклопакетов готовы поставлять комплектующие для окон и дверей по новым нормам.
Новые строительные правила предписывают строителям приобретать более дорогие окна и двери и при этом не увеличить стоимость жилья.
Фолькер Гут, генеральный директор Deceuninck в России
— Современные технологии позволяют изготовить доступные по цене окна из многокамерных ПВХ профилей, с 3-мя контурами уплотнителей, увеличенным до 25 мм заглублением стеклопакета и с двухкамерными стеклопакетами с многофункциональными стеклами. Приведенный коэффициент сопротивления такого окна в районе единицы. Одно из таких решений – инновационный профиль Deceuninck «Фаворит Спэйс», который неоднократно отмечался профессиональным сообществом и экспертами как энергоэффективный. Увеличенная ширина профиля 76 мм, 6 воздушных камер и дополнительный 3-й контур уплотнителя в окне «Фаворит Спэйс» надежно сохраняют тепло и спасают от сквозняков. В дополнение ко всему окна «Фаворит Спэйс» экологичны и надежны: их профиль производится без использования свинца и рассчитан на 60 лет эксплуатации.
Рис. 6 Сечение современного окна системы «Фаворит Спэйс» от Декёнинк, производство г. Протвино, Россия Портал ОКНА МЕДИА рекомендует: Руководство строительной компании ЮИТ посетили завод партнера Deceuninck в Екатеринбурге